Transpiration-induced axial and radial tension gradients in trunks of Douglas-fir trees.
نویسندگان
چکیده
We determined the axial and radial xylem tension gradients in trunks of young Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Axial specific conductivity (k(s-a)) and sap flux density (Js) were measured at four consecutive depths within the sapwood at a stem height of 1 m. By definition, at a given position in the bole, Js is a function not only of k(s-a) but also of the driving force for water movement. The Js:k(s-a) ratio was therefore used to estimate axial tension gradients and the radial gradients at a stem height of 1 m were calculated from the differences in axial tension gradients at each depth. Tracheid lumen diameter and tracheid length were used to predict differences in k(s-a) and its divergence from the theoretical k(s-a) determined by the Hagen Poisseuille equation. The ratio of k(s-a) (determined in the laboratory) to Js (measured in the field) varied with depth in the sapwood, resulting in non-uniform axial and radial tension gradients from inner to outer sapwood. Transpiration-induced axial tension gradients were in the range of 0.006-0.01 MPa m(-1) excluding the gravitational tension gradient. At a stem height of 1 m, radial tension gradients were in the range of 0.15-0.25 MPa m(-1) and were lower in the middle sapwood than in the inner or outer sapwood. Axial tension gradients were 44-50% higher in the outer sapwood than in the inner sapwood. At a stem height of 1 m, radial Js, calculated on the basis of radial tension gradients and measured radial specific conductivity (k(s-r)), was about two orders of magnitude smaller than axial Js. Our findings indicate that large radial tension gradients occur in the sapwood and clarify the role played by xylem k(s-a) and k(s-r) in determining in situ partitioning of Js in the axial and radial directions.
منابع مشابه
Climate-related trends in sapwood biophysical properties in two conifers: avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance.
In the Pacific north-west, the Cascade Mountain Range blocks much of the precipitation and maritime influence of the Pacific Ocean, resulting in distinct climates east and west of the mountains. The current study aimed to investigate relationships between water storage and transport properties in populations of Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa) adapted to ...
متن کاملSafety factorS for xylem failure by imploSion and air-Seeding within rootS, trunkS and brancheS of young and old conifer treeS
The cohesion-tension theory of water transport states that hydrogen bonds hold water molecules together and that they are pulled through the xylem under tension. This tension could cause transport failure in at least two ways: collapse of the conduit walls (implosion), or rupture of the water column through air-seeding. The objective of this research was to elucidate the functional significance...
متن کاملVariability with xylem depth in sap flow in trunks and branches of mature olive trees.
Knowledge of sap flow variability in tree trunks is important for up-scaling transpiration from the measuring point to the whole-tree and stand levels. Natural variability in sap flow, both radial and circumferential, was studied in the trunks and branches of mature olive trees (Olea europea L., cv Coratina) by the heat field deformation method using multi-point sensors. Sapwood depth ranged fr...
متن کاملVariation in water potential, hydraulic characteristics and water source use in montane Douglas-fir and lodgepole pine trees in southwestern Alberta and consequences for seasonal changes in photosynthetic capacity.
Tree species response to climate change-induced shifts in the hydrological cycle depends on many physiological traits, particularly variation in water relations characteristics. We evaluated differences in shoot water potential, vulnerability of branches to reductions in hydraulic conductivity, and water source use between Pinus contorta Dougl. ex Loud. var. latifolia Engelm. (lodgepole pine) a...
متن کاملCorrelations between stable carbon-isotope abundance and hydraulic conductivity in Douglas-fir across a climate gradient in Oregon, USA.
Stomatal conductance in trees is related to both foliar carbon-isotope abundance and stem hydraulic properties. By combining these relationships, I hypothesized that carbon-isotope abundance in foliage should vary with limitations to water movement through supporting branches. I sampled Douglas-fir branches (Pseudotsuga menziesii (Mirb.) Franco) from six sites across a climate gradient in Orego...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Tree physiology
دوره 26 3 شماره
صفحات -
تاریخ انتشار 2006